Αρχείο:JuliaRay3.png
Τα περιεχόμενα της σελίδας δεν υποστηρίζονται σε άλλες γλώσσες.
Εμφάνιση
![Αρχείο:JuliaRay3.png](http://upload.wikimedia.org/wikipedia/commons/thumb/1/18/JuliaRay3.png/600px-JuliaRay3.png)
Μέγεθος αυτής της προεπισκόπησης: 600 × 600 εικονοστοιχεία . Άλλες αναλύσεις: 240 × 240 εικονοστοιχεία | 480 × 480 εικονοστοιχεία | 768 × 768 εικονοστοιχεία | 1.024 × 1.024 εικονοστοιχεία | 1.500 × 1.500 εικονοστοιχεία.
Εικόνα σε υψηλότερη ανάλυση (1.500 × 1.500 εικονοστοιχεία, μέγεθος αρχείου: 208 KB, τύπος MIME: image/png)
![]() | Αυτό το αρχείο και η περιγραφή του προέρχονται από το Wikimedia Commons. Οι πληροφορίες από την σελίδα περιγραφής του εκεί εμφανίζονται παρακάτω. |
Περιεχόμενα
Σύνοψη
ΠεριγραφήJuliaRay3.png |
English: Julia set and external rays landing on fixed point
Polski: Zbiór Julia i zewnętrzne promienie lądujące na punkcie stałym |
Ημερομηνία | |
Πηγή |
Own work with help of many great people (see references) |
Δημιουργός | Adam majewski |
άλλες εκδόσεις |
|
What program does ?
Program draws to png file :
- repelling fixed point
and other fixed point
- superattracting 3-point cycle (limit cycle) :
( period is 3 )
- Julia set ( backward orbit of repelling fixed point
) using modified inverse iteration method (MIIM/J)
- 3 external rays :
which land on fixed point
Algorithms
- drawing Julia set
- drawing external ray is based on c program by Curtis McMullen[1] and its Pascal version by Matjaz Erat[2]
Software needed
- Maxima CAS
- gnuplot for drawing ( creates png file )
Tested on versions :
- wxMaxima 0.7.6
- Maxima 5.16.3
- Lisp GNU Common Lisp (GCL) GCL 2.6.8 (aka GCL)
- Gnuplot Version 4.2 patchlevel 3
Source code
It is a batch file for Maxima CAS.
/*
batch file for Maxima CAS
*/
/* --------------------------definitions of functions ------------------------------*/
f(z,c):=z*z+c;
finverseplus(z,c):=sqrt(z-c);
finverseminus(z,c):=-sqrt(z-c);
/*
Square root of complex number : csqrt(x + y * i) = sqrt((r + x) / 2) + i * y / sqrt(2 * (r + x))
gives principal value of square root : -Pi <arg<Pi
*/
csqrt(z):=
block(
[t,re,im],
t:abs(z)+realpart(z),
if t>0
then (re:sqrt(t/2), im:imagpart(z)/sqrt(2*t))
else (im:abs(z), re:0),
return(float(re+im*%i))
)$
Psi_n(r,t,z_last, Max_R):=
/* */
block(
[iMax:200,
iMax2:0],
/* ----- forward iteration of 2 points : z_last and w --------------*/
array(forward,iMax-1), /* forward orbit of z_last for comparison */
forward[0]:z_last,
i:0,
while cabs(forward[i])<Max_R and i< ( iMax-2) do
(
/* forward iteration of z in fc plane & save it to forward array */
forward[i+1]:forward[i]*forward[i] + c, /* z*z+c */
/* forward iteration of w in f0 plane : w(n+1):=wn^2 */
r:r*2, /* square radius = R^2=2^(2*r) because R=2^r */
t:mod(2*t,1),
/* */
iMax2:iMax2+1,
i:i+1
),
/* compute last w point ; it is equal to z-point */
R:2^r,
/* w:R*exp(2*%pi*%i*t), z:w, */
array(backward,iMax-1),
backward[iMax2]:rectform(ev(R*exp(2*%pi*%i*t))), /* use last w as a starting point for backward iteration to new z */
/* ----- backward iteration point z=w in fc plane --------------*/
for i:iMax2 step -1 thru 1 do
(
temp:csqrt(backward[i]-c), /* sqrt(z-c) */
scalar_product:realpart(temp)*realpart(forward[i-1])+imagpart(temp)*imagpart(forward[i-1]),
if (0>scalar_product) then temp:-temp, /* choose preimage */
backward[i-1]:temp
),
return(backward[0])
)$
/*
draws external dynamic rays
R(t) = {z:arg_e(z)=t}
using
z= Psi_n(w) = fc^{-n}(w^2^n)
there are 2 dynamic planes :
- f0 plane where are w points; f0(w):=w*w
- fc plane where are z points; fc(z):=z*z+c
*/
GiveRay(t,c):=
block(
[r],
/* range for drawing R=2^r ; as r tends to 0 R tends to 1 */
rMin:1E-10, /* 1E-4; rMin > 0 ; if rMin=0 then program has infinity loop !!!!! */
rMax:2,
caution:0.9330329915368074, /* r:r*caution ; it gives smaller r */
/* upper limit for iteration */
R_max:300,
/* */
zz:[], /* array for z points of ray in fc plane */
/* some w-points of external ray in f0 plane */
r:rMax,
while 2^r<R_max do r:2*r, /* find point w on ray near infinity (R>=R_max) in f0 plane */
R:2^r,
w:rectform(ev(R*exp(2*%pi*%i*t))),
z:w, /* near infinity z=w */
zz:cons(z,zz),
unless r<rMin do
( /* new smaller R */
r:r*caution,
R:2^r,
/* */
w:rectform(ev(R*exp(2*%pi*%i*t))),
/* */
last_z:z,
z:Psi_n(r,t,last_z,R_max), /* z=Psi_n(w) */
zz:cons(z,zz)
),
return(zz)
)$
/* Gives points of backward orbit of z=repellor */
GiveBackwardOrbit(c,repellor,zxMin,zxMax,zyMin,zyMax,iXmax,iYmax):=
block(
hit_limit:4, /* proportional to number of details and time of drawing */
PixelWidth:(zxMax-zxMin)/iXmax,
PixelHeight:(zyMax-zyMin)/iYmax,
/* 2D array of hits pixels . Hit > 0 means that point was in orbit */
array(Hits,fixnum,iXmax,iYmax), /* no hits for beginning */
/* choose repeller z=repellor as a starting point */
stack:[repellor], /*save repellor in stack */
/* save first point to list of pixels */
x_y:[repellor],
/* reversed iteration of repellor */
loop,
/* pop = take one point from the stack */
z:last(stack),
stack:delete(z,stack),
/*inverse iteration - first preimage (root) */
z:finverseplus(z,c),
/* translate from world to screen coordinate */
iX:fix((realpart(z)-zxMin)/PixelWidth),
iY:fix((imagpart(z)-zyMin)/PixelHeight),
hit:Hits[iX,iY],
if hit<hit_limit
then
(
Hits[iX,iY]:hit+1,
stack:endcons(z,stack), /* push = add z at the end of list stack */
if hit=0 then x_y:endcons( z,x_y)
),
/*inverse iteration - second preimage (root) */
z:-z,
/* translate from world to screen coordinate, coversion to integer */
iX:fix((realpart(z)-zxMin)/PixelWidth),
iY:fix((imagpart(z)-zyMin)/PixelHeight),
hit:Hits[iX,iY],
if hit<hit_limit
then
(
Hits[iX,iY]:hit+1,
stack:endcons(z,stack), /* push = add z at the end of list stack to continue iteration */
if hit=0 then x_y:endcons( z,x_y)
),
if is(not emptyp(stack)) then go(loop),
return(x_y) /* list of pixels in the form [z1,z2] */
)$
compile(all);
/* ----------------------- main ----------------------------------------------------*/
start:elapsed_run_time ();
/* c:-0.12256+0.74486*%i; value by Milnor*/
c:0.74486176661974*%i-0.12256116687665; /* center of period 3 component */
/* resolution is proportional to number of details and time of drawing */
iX_max:5000;
iY_max:5000;
/* define z-plane ( dynamical ) */
ZxMin:-2.0;
ZxMax:2.0;
ZyMin:-2.0;
ZyMax:2.0;
/* compute ray points & save to zz list; external angle in turns */
zz1:GiveRay(1/7,c)$
zz2:GiveRay(2/7,c)$
zz4:GiveRay(4/7,c)$
/* limit cycle */
z0:0;
zp:[];
zp:cons(z0,zp);
z1:f(z0,c);
zp:cons(z1,zp);
z2:f(z1,c);
zp:cons(z2,zp);
/* compute fixed points */
beta:rectform((1+csqrt(1-4*c))/2); /* compute repelling fixed point beta */
alfa:rectform((1-csqrt(1-4*c))/2); /* other fixed point */
/* compute backward orbit of repelling fixed point */
xy: GiveBackwardOrbit(c,beta,ZxMin,ZxMax,ZyMin,ZyMax,iX_max,iY_max)$ /**/
/* time of computations */
time:fix(elapsed_run_time ()-start);
/* draw it using draw package by */
load(draw);
draw2d(
terminal = 'svg,
file_name = "~/maxima/batch/julia/rabbit/JuliaRay151",
user_preamble="set size square;set key bottom right",
title= concat("Dynamical plane for fc(z)=z*z+",string(c),"; Julia set and external
rays landing on fixed point z=alfa"),
pic_width = 1500,
pic_height = 1500,
yrange = [ZyMin,ZyMax],
xrange = [ZxMin,ZyMax],
xlabel = "Z.re ",
ylabel = "Z.im",
point_type = filled_circle,
points_joined =true,
point_size = 0.1,
color = red,
key = concat("external ray for angle ",string(1/7)),
points(map(realpart,zz1),map(imagpart,zz1)),
key = concat("external ray for angle ",string(2/7)),
points(map(realpart,zz2),map(imagpart,zz2)),
key = concat("external ray for angle ",string(4/7)),
points(map(realpart,zz4),map(imagpart,zz4)),
points_joined =false,
color = black,
key = "backward orbit of z=beta",
points(map(realpart,xy),map(imagpart,xy)),
color = blue,
point_size = 0.9,
key = "repelling fixed point z= beta",
points([[realpart(beta),imagpart(beta)]]),
color = yellow,
key = "repelling fixed point z= alfa",
points([[realpart(alfa),imagpart(alfa)]]),
color = green,
key = "periodic z-points",
points(map(realpart,zp),map(imagpart,zp))
);
Acknowledgements
This program is not only my work but was done with help of many great people (see references). Warm thanks (:-))
References
- ↑ c program by Curtis McMullen (quad.c in Julia.tar.gz) archive copy at the Wayback Machine
- ↑ Quadratische Polynome by Matjaz Erat. Archived from the original on 2023-04-05. Retrieved on 2009-05-25.
Αδειοδότηση
Εγώ, ο κάτοχος των πνευματικών δικαιωμάτων αυτού του έργου, το δημοσιεύω δια του παρόντος υπό τις εξής άδειες χρήσης:
![w:el:Creative Commons](https://upload.wikimedia.org/wikipedia/commons/thumb/7/79/CC_some_rights_reserved.svg/90px-CC_some_rights_reserved.svg.png)
![αναφορά προέλευσης](https://upload.wikimedia.org/wikipedia/commons/thumb/1/11/Cc-by_new_white.svg/24px-Cc-by_new_white.svg.png)
![παρόμοια διανομή](https://upload.wikimedia.org/wikipedia/commons/thumb/d/df/Cc-sa_white.svg/24px-Cc-sa_white.svg.png)
Το αρχείο διανέμεται υπό την άδεια Creative Commons Αναφορά προέλευσης-Παρόμοια διανομή 3.0 Μη εισαγόμενη
- Είστε ελεύθερος:
- να μοιραστείτε – να αντιγράψετε, διανέμετε και να μεταδώσετε το έργο
- να διασκευάσετε – να τροποποιήσετε το έργο
- Υπό τις ακόλουθες προϋποθέσεις:
- αναφορά προέλευσης – Θα πρέπει να κάνετε κατάλληλη αναφορά, να παρέχετε σύνδεσμο για την άδεια και να επισημάνετε εάν έγιναν αλλαγές. Μπορείτε να το κάνετε με οποιοδήποτε αιτιολογήσιμο λόγο, χωρίς όμως να εννοείται με οποιονδήποτε τρόπο ότι εγκρίνουν εσάς ή τη χρήση του έργου από εσάς.
- παρόμοια διανομή – Εάν αλλάξετε, τροποποιήσετε ή δημιουργήσετε πάνω στο έργο αυτό, μπορείτε να διανείμετε αυτό που θα προκύψει μόνο υπό τους όρους της ίδιας ή συμβατής άδειας με το πρωτότυπο.
![]() |
Παραχωρείται η άδεια προς αντιγραφή, διανομή και/ή τροποποίηση αυτού του εγγράφου υπό τους όρους της Άδειας Ελεύθερης Τεκμηρίωσης GNU, Έκδοση 1.2 ή οποιασδήποτε νεότερης έκδοσης δημοσιευμένης από το Ίδρυμα Ελεύθερου Λογισμικού· χωρίς Απαράλαχτους Τομείς, χωρίς Κείμενα Εξωφύλλου, και χωρίς Κείμενα Οπισθοφύλλου. Αντίγραφο της άδειας περιλαμβάνεται στην σελίδα με τίτλο GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
Μπορείτε να επιλέξετε την άδεια της προτίμησής σας.
Λεζάντες
Δεν ορίστηκε λεζάντα
Items portrayed in this file
απεικονίζει
23 Μαΐου 2009
Ιστορικό αρχείου
Κλικάρετε σε μια ημερομηνία/ώρα για να δείτε το αρχείο όπως εμφανιζόταν εκείνη τη στιγμή.
Ώρα/Ημερομ. | Μικρογραφία | Διαστάσεις | Χρήστης | Σχόλια | |
---|---|---|---|---|---|
τελευταία | 20:15, 26 Ιουνίου 2015 | ![]() | 1.500 × 1.500 (208 KB) | Soul windsurfer | better quality |
15:51, 25 Μαΐου 2009 | ![]() | 1.000 × 1.000 (18 KB) | Soul windsurfer | changed bad names ( beta instead of alfa ) | |
09:14, 23 Μαΐου 2009 | ![]() | 1.000 × 1.000 (18 KB) | Soul windsurfer | {{Information |Description={{en|1=Julia set and external rays landing on repelling fixed point. Parametr c is in the center of period 3 hyperbolic component of Mandelbrot set}} {{pl|1=Zbiór Julia i zewnętrzne promienie lądujące na odpychającym punkci |
Συνδέσεις αρχείου
Τα παρακάτω λήμματα συνδέουν σε αυτό το αρχείο:
Καθολική χρήση αρχείου
Τα ακόλουθα άλλα wiki χρησιμοποιούν αυτό το αρχείο:
- Χρήση σε en.wikipedia.org
- Χρήση σε en.wikibooks.org
Ανακτήθηκε από "https://el.wikipedia.org/wiki/Αρχείο:JuliaRay3.png"