Μετάβαση στο περιεχόμενο

Τριγωνικός πίνακας

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια

Στην γραμμική άλγεβρα, άνω τριγωνικός πίνακας είναι κάθε τετραγωνικός πίνακας που έχει μόνο μηδενικά στοιχεία κάτω από την κύρια διαγώνιο.[1]:36[2]:8[3]:16[4]:7[5]:69[6]:193 Πιο συγκεκριμένα, είναι κάθε πίνακας διαστάσεων όπου τα στοιχεία για κάθε . Για η γενική τους μορφή είναι:

Αντίστοιχα, κάτω τριγωνικός πίνακας είναι κάθε τετραγωνικός πίνακας που έχει μόνο μηδενικά στοιχεία πάνω από την κύρια διαγώνιο. Πιο συγκεκριμένα, είναι κάθε πίνακας διαστάσεων όπου τα στοιχεία για κάθε . Για η γενική τους μορφή είναι:

Ένας πίνακας λέγεται τριγωνικός αν είναι άνω ή κάτω τριγωνικός.

  • Οι παρακάτω πίνακες είναι άνω τριγωνικοί:
  • Οι παρακάτω πίνακες είναι κάτω τριγωνικοί:

Οι τριγωνικοί πίνακες έχουν τις εξής ιδιότητες:

  • Ο ανάστροφος πίνακας ενός κάτω (άνω) τριγωνικού πίνακα είναι άνω (κάτω) τριγωνικός.
  • Το άθροισμα δύο κάτω (άνω) τριγωνικών πινάκων είναι κάτω (άνω) τριγωνικός πίνακας.
  • Το γινόμενο δύο κάτω (άνω) τριγωνικών πινάκων είναι κάτω (άνω) τριγωνικός πίνακας.
  • Ο αντίθετος ενός κάτω (άνω) τριγωνικού πίνακα είναι κάτω (άνω) τριγωνικός.
  • Η ορίζουσα ενός τριγωνικού πίνακα είναι ίση με το γινόμενο των στοιχείων της κυρίας διαγωνίου.
  • Το χαρακτηριστικό πολυώνυμο ενός κάτω (άνω) τριγωνικού πίνακα δίνεται από τον τύπο
.
Επομένως, οι ιδιοτιμές του πίνακα είναι τα στοιχεία της διαγωνίου του.

Επίλυση γραμμικών εξισώσεων

[Επεξεργασία | επεξεργασία κώδικα]

Έστω ένα σύστημα γραμμικών εξισώσεων που μπορεί να γραφτεί με την μορφή με αγνώστους . Τότε μπορούμε να βρούμε την λύση του ξεκινώντας βρίσκοντας το , μετά το κ.ο.κ., χρησιμοποιώντας τους εξής τύπους:

,
,
.

Παρατηρήστε ότι στο -οστό βήμα βρίσκουμε την τιμή του χρησιμοποιώντας τις τιμές των (που έχουμε υπολογίσει στα προηγούμενα βήματα). Ο αλγόριθμος αυτός χρειάζεται συνολικά πράξεις.

Αυστηρά τριγωνικός

[Επεξεργασία | επεξεργασία κώδικα]

Ένας άνω τριγωνικός πίνακας λέγεται αυστηρά άνω τριγωνικός, αν τα στοιχεία της διαγωνίου του είναι μηδέν. Αντίστοιχα, για έναν αυστηρά κάτω τριγωνικό πίνακα.

  1. Χαραλάμπους, Χ.· Φωτιάδης, Α. (2015). Μία εισαγωγή στη γραμμική άλγεβρα για τις θετικές επιστήμες. Αθήνα: ΣΕΑΒ. ISBN 978-960-603-273-8. 
  2. Βουκούτης, Ν. Εισαγωγή στη γραμμική άλγεβρα: Πίνακες, Ορίζουσες, Γραμμικά συστήματα για τις πανελλήνιες εξετάσεις β' λυκείου. Αθήνα: Δημόκριτος. 
  3. Βασιλειάδης, Π. (1983). Στοιχειώδης γραμμική άλγεβρα: Θεωρία, μεθοδολογία, παραδείγματα, ασκήσεις. Θεσσαλονίκη. 
  4. Κυριακόπουλος, Α. Κ.· Κυβερνητου-Κυριακοπουλου, Χ. Μαθηματικά Γ' Λυκείου - 1ης και 4ης Δέσμης: Πίνακες, γραμμικά συστήματα, ορίζουσες. Αθήνα: Εκδόσεις Παπαδημητροπούλου. 
  5. Μυριτζής, Ιωάννης (2015). Δυναμικά συστήματα. Αθήνα: ΣΕΑΒ. ISBN 978-960-603-423-7. 
  6. Μπράτσος, Α. (2015). Μαθήματα ανωτέρων μαθηματικών. Αθήνα: ΣΕΑΒ. ISBN 978-960-603-030-7.