Τετραγωνικό σώμα
Εμφάνιση
Το λήμμα παραθέτει τις πηγές του αόριστα, χωρίς παραπομπές. |
Ως τετραγωνικό σώμα (quadratic field) ορίζουμε ένα σώμα αριθμών K βαθμού 2 επί του .Επομένως όπου ο θ είναι αλγεβρικός ακέραιος και .
Εύκολα αποδυκνείεται οτι κάθε τετραγωνικό σώμα είναι της μορφής όπου και o είναι ελεύθερος τετραγώνου. Αν d > 0 το σώμα ονομάζεται πραγματικό τετραγωνικό σώμα ενώ αν d < 0 τότε ονομάζεται μιγαδικό τετραγωνικό σώμα.
Τα τετραγωνικά σώματα αρχικά μελετήθηκαν ως μέρος της θεωρίας των τετραγωνικών μορφών.
Γενικότερα για τους αριθμοθεωρητικούς ενδιαφέρον παρουσιάζει η γνώση του αριθμού κλάσεων ενός σώματος αριθμών. Το θεώρημα των Stark-Steiger (Σταρκ-Στάιγκερ) μας λέει ότι
- Αν d < 0, τότε ο αριθμός κλάσεων του Q(√ d) είναι ίσος με 1 αν και μόνο αν d = −1, −2, −3, −7, −11, −19, −43, −67, or −163.
Αντίστοιχο θεώρημα για τα πραγματικά τετραγωνικά σώματα δεν είναι γνωστό.